当前位置: 首页  >>   >>  新闻详情
新闻详情
来源/作者: 东方城乡报摘编自《农业智库》
  • 分享

  • 手机版

  • 微信

国外数字农业的发展趋势

数字农业是农业现代化的核心,也是数字乡村建设和乡村振兴的重要内容。本文旨在分析国外数字农业发展新趋势,以期借鉴国外发展经验加速中国农业数字化转型。

设备数字化

美国依托GPS技术,将GPS用于农业机械管理,并结合美国农场规模大且机械化水平高的特点,在农业机械上安装GPS及地理地形地图,将农业生产中的机械路线、作业时间、耕作程序、农作物品种、生产资料识别与装载、机械油料补给等信息数字化,以便智能农机可以自动识别。农业生产者通过将电脑与既定农业机械相连接,对农作物进行生产前、中、后期全面监测与管理,保证不同地块、不同作物在各自生产周期内的药物、化肥自动都得到保障且不会有任何遗漏;同时,根据GPS信号和数字电子围栏锁定农业机械使用范围,避免随意的非生产性使用,并且具有农机防盗功能。

生产智慧化

目前,发达国家开始在农场生产管理中引入遥感技术、智能机械系统、计算机网络、机器视觉技术等现代农业技术,使传统农业演化至农业智慧化阶段。通过地块光电感应器将农作物生长阶段、营养状态、健康水平以及光照、温湿度、空气、土壤含水率和养分等物理状态数字化,并传输到智能生长控制系统,让人工智能自动分析处理和制订生产管理措施,实现对农作物生长的智能控制。

例如,孟山都公司借助遥感卫星和无人机光电扫描技术,定期将耕地红外图像发送至智能生长控制系统,将农作物的播种、施肥、灌溉、喷药等生产环节智慧化、管控科学化,实现农地资源利用和生态环境保护之间的最优平衡。约翰迪尔公司推出的“绿色之星”智能精准农业系统,结合全球定位系统、地理信息系统、人工智能和物联网技术,将传统的精准农业进化成智慧农业,促进农作物优质高产。日本针对其资源短缺问题,发展“战略性创新创造计划”、“智能机械+现代信息”等次生代技术,将最科学的种植知识和经验转化成数字,再通过物联网和带有人工智能的机械来管理农业生产,从而催生了数智农业;将传统亲临生产现场并依赖经验和直觉判断农业生长状况、进而将管理农业生产的模式,转化为依赖机械设备之间的数字传递,控制机械运作方式、运作时间、生产模式来实现最优的水、农药和化肥施用。日本推出基于人工智能的数字作物优化平台,农民可以在平台上看到对作物各生长阶段以及病害和杂草风险的实况及其未来的模拟,并获得人工智能提供的管理措施建议。结合GPS导航、地理信息系统和传感器,通过平台与无人机、拖拉机、带摄像头和传感器的机器人连接,让机器人或智能机械负责繁重或有危险性的劳动,如农药喷洒、收割、卸货等,并根据传感器收集的大数据和智能机器的机器学习,不断改进农业生产管理方法,实现农业高质量增产。

流通智能化

发达国家致力于利用人工智能和数字技术智慧化农产品流通,以削减成本和提高效率。美国利用遥感、地理信息系统等技术对美国以及全球粮食作物的种植面积、种植品种、生长状况、病虫害、自然灾害进行监测和产量预测,并据此为农业生产者提供准确的市场供求预测,引导生产和国际贸易等信息,为美国农业提高流通效率、占领全球市场和避免市场风险抢占先机。欧盟提出智慧农产品流通研究计划,管理部门与生产企业共同利用数字技术、区块链技术标记蔬菜生产管理措施、地理位置信息和质量标准等相关信息,通过区块链不可篡改、可追溯优点和实体产品数字化等特点,使消费者可以获得自己所购买蔬菜的所有完备信息,克服农产品市场信息不对称问题,从而保障了食品安全,满足消费者的更高要求,提高了流通效率。荷兰的《数字化战略》明确提出大力推动数字化技术在农业生产链各环节的广泛应用。其2020年食品和农场互联网计划及智能农业枢纽计划,利用物联网、大数据、人工智能和GPS定位等技术帮助200万个分布全欧洲的农场实现数字化,将欧洲16个国家的合作者和销售者联结起来,实现农场与市场智能化对接,节省了流通成本。

管理精细化

数字农业生产摆脱了传统农业必须人工亲自操作的局限性,实现农业设备不间断、精细化的自动智能收集和处理数字信号,并将信号连续不断传输至人工智能系统以帮助农民进行科学判断和生产决策。精细化农业的基本特征是管理过程精细和资源投入精省。

美国将通过卫星获取的全国农业数据包括温度、湿度、风力、雨水、土壤成分等传送至农业数据平台,农户通过输入地块坐标即可下载相关数据,并获得农业种植品种、种植密度、杂草消除、病虫防治、肥料施用等系统提供的精准建议,克服了传统的农业生产者凭经验生产的局限,实现了成本降低、资源节约。欧盟推出以数字化为特征的“农业4.0”,利用卫星定位系统、物联网和人工智能技术将农作物生产管理数字化,根据农作物生长阶段和环境变化,农业机械自动根据要求管理松土、施肥、修剪、除草、灌溉,传统农业生产中的细枝末节生产经营活动自动由机械根据人工智能和大数据经验来处理。同时,利用人工智能和大数据,制订最优农作物生长调节解决方案,并根据其地理位置和气候环境特点,实现差异化的自动化、精准化、变量化作业,确保农作物高效、优质生产和环境保护的实现。德国拜耳公司的数字农业支持系统及方案,通过田间监测与人工智能识别系统,高效识别和分析作物生长阶段和病虫害信息,帮助农民优化田块单独管理和农田统筹优化。法国推出的农业机器人——Dino,结合人工智能、GPS和农田传感器,可以高精确度全天候除杂草杂物、缓解法国劳动力匮乏,符合日益严格的食品安全要求。

推广阶段化

由于农业数字化需要完善的数字化农业公共基础设施作为支撑,除了要具备的GPS定位技术、地理信息系统外,还需要移动信息传输系统、智能公共服务平台,这需要巨量的前期投入,短期内没有一个国家可以实现。因此,发达国家数字化发展并不是全面铺开,而是重点在数字农业成本较低的农业重点地区实施,以便形成经济和社会效益高的数字农业示范区,分阶段分地区,由易到难,逐步带动周边地区推广数字农业。

由于日本多为丘陵地形,农场面积也小,农业机械以小型为主,所以日本数字农业实施初期没有考虑地理位置,而是选择在邻近市场、移动网络等基础设施完善且经济较发达的地区开始。这些地区农户收入较高,对数字农业机械的投资也有较高承受能力。同时,这些地区与市场距离近、农产品需求大和消费者也有较高价格承受能力,适合数字农业初始时期农产品质高价高的特点,保证数字农业较容易获得利润,从而对周边地区形成示范效应,带动周边地区实施数字农业,逐步扩大数字化农业的经营规模,最终确保数字农业实现高效率、高产出和在保证高质量的前提下大幅度降低农产品成本。美国数字化农业主要集中于中部、北部和南部,这些地区是美国的玉米带、棉花带、小麦带,当地农场多且规模大,同种农作物的播种面积大,农业机械多,农场主对数字农业机械设备承受能力也高,数字农业基础设施利用率和回报均较高,因此也具有较完善的数字化农业基础设施。法国有22个大农业区,但数字农业优先在巴黎盆地实施,主要是考虑到当地土地平整、农场规模大,主要农作物为小麦,其耕作机械化程度高;同时,当地农场主收入高,移动网络等基础设施完善,数字化农业基础设施农业投资相对较低,数字农业也容易获得良好的经济收益。

发布时间:2023-05-09提交人:上海市农业机械鉴定推广站 王琪琛责任编辑:总站信息处 刘玉
>